Stability of neutral delay differential equations modeling wave propagation in cracked media

نویسندگان

  • Stéphane Junca
  • Bruno Lombard
چکیده

Propagation of elastic waves is studied in a 1D medium containing N cracks modeled by nonlinear jump conditions. The case N = 1 is fully understood. When N > 1, the evolution equations are written as a system of nonlinear neutral delay differential equations, leading to a well-posed Cauchy problem. In the case N = 2, some mathematical results about the existence, uniqueness and attractivity of periodic solutions have been obtained in 2012 by the authors, under the assumption of small sources. The difficulty of analysis follows from the fact that the spectrum of the linear operator is asymptotically closed to the imaginary axis. Here we propose a new result of stability in the homogeneous case, based on an energy method. One deduces the asymptotic stability of the zero steady-state. Extension to N = 3 cracks is also considered, leading to new results in particular configurations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Wave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)

A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017